

CITIES FOR US

engaging communities and citizens for sustainable development

Multimodal accessibility and commuting to campus: the case of the University of Lisbon

David Sousa Vale, Mauro Pereira, Luís Sanchez Carvalho

CIAUD, Faculty of Architecture, University of Lisbon dvale@fa.ulisboa.pt
$12^{\text {th }}$ International Symposium on Urban Planning and Environment $1^{\text {th }}$ UPE Lusophone Symposium

Built Environment and Travel

The University of Lisbon Locations - 7 campuses

The University of Lisbon Locations - 7 campuses

The University of Lisbon Travel Survey

Initial sample: 2037
Georeferenced: 1963
90.6\% travel 3 or more times per week >> Final sample: 1767 individuals

Travel patterns

TRAVEL TIME

NUMBER OF TRAVEL STEPS

Mean $=42.5 \mathrm{~min}$
StDev $=31.43 \mathrm{~min}$

Mean = 2.34
StDev = 1.38

Travel patterns Alternative travel mode

			Alternative Travel Mode								Total
			None	Walk	Bicycle	$\begin{gathered} \text { Public } \\ \text { Transport } \end{gathered}$	Car passenger	Car driver	Motorcycle	Taxi	
Travel Mode	Walk	Count	174	0	4	61	29	23	1	1	293
		\% within Travel Mode	59.4\%	0.0\%	1.4\%	20.8\%	9.9\%	7.8\%	0.3\%	0.3\%	100.0\%
	Bicycle	Count	3	1	0	4	0	3	0	0	11
		\% within Travel Mode	27.3\%	9.1\%	0.0\%	36.4\%	0.0\%	27.3\%	0.0\%	0.0\%	100.0\%
	Public Transport	Count	505	40	10	0	143	129	3	10	840
		\% within Travel Mode	60.1\%	4.8\%	1.2\%	0.0\%	17.0\%	15.4\%	0.4\%	1.2\%	100.0\%
	Car passenger	Count	5	0	0	22	0	2	0	0	29
		\% within Travel Mode	17.2\%	0.0\%	0.0\%	75.9\%	0.0\%	6.9\%	0.0\%	0.0\%	100.0\%
	Car driver	Count	262	15	7	162	0	0	0	11	457
		\% within Travel Mode	57.3\%	3.3\%	1.5\%	35.4\%	0.0\%	0.0\%	0.0\%	2.4\%	100.0\%
	Motorcycle	Count	4	0	1	6	0	9	0	0	20
		\% within Travel Mode	20.0\%	0.0\%	5.0\%	30.0\%	0.0\%	45.0\%	0.0\%	0.0\%	100.0\%
	Taxi	Count	2	0	0	1	0	2	0	0	5
		\% within Travel Mode	40.0\%	0.0\%	0.0\%	20.0\%	0.0\%	40.0\%	0.0\%	0.0\%	100.0\%
	PT + other motorized	Count	35	0	0	20	18	33	1	1	108
		\% within Travel Mode	32.4\%	0.0\%	0.0\%	18.5\%	16.7\%	30.6\%	0.9\%	0.9\%	100.0\%
	PT + bicycle	Count	0	0	0	0	2	0	0	0	2
		\% within Travel Mode	0.0\%	0.0\%	0.0\%	0.0\%	100.0\%	0.0\%	0.0\%	0.0\%	100.0\%
Total		Count	990	56	22	276	192	201	5	23	1765
		\% within Travel Mode	56.1\%	3.2\%	1.2\%	15.6\%	10.9\%	11.4\%	0.3\%	1.3\%	100.0\%

no alternative mode for:
59.4\% Walkers
60.1\% PT users
57.3\% Car drivers

PT is alternative mode for:
75.9\% car passengers
35.4\% Car drivers

1) What's the impact of the employment status?

Student
45.3 min

Professor
26.2 min

Travel Time

PhD / Researcher 34.2 min

Staff
38.9 min

- Car driver
- Motorcycle
- Taxi
- PT + other motorized
- PT + bicycle

PhD / Researcher
16\% Walk
41\% PT
31\% Car driver

Staff
10\% Walk
34\% PT
46\% Car driver

TRAVEL DISTANCE Employment Status

18\% up to 4 km 37% up to 7 km

Student 18% up to 4 km 36% up to 7 km

Travel distance

Travel distance

PhD / Researcher
23\% up to 4 km
54\% up to 7 km

Staff

9\% up to 4 km 30% up to 7 km

2) What's the impact of the location of the campus?

Mean
42.5 min

Cidade Universitária

Polo Ajuda

ISEG

IST

FMH

ISA*

FBA*

TRAVEL DISTANCE
Campus ULisboa
18\% up to 4 km 37% up to 7 km

Cidade Universitária

Polo Ajuda

ISEG

IST

FMH
Travel distance

ISA*

Location of residential place Kernel density

Polo Ajuda

IST

FMH

ISA*

FBA*

3) What explains the commuting pattern?

Logistic model (No-car commuting =1)

Independent Variables (30)

```
BUILT ENVIRONMENT
@ HOME (6)
    Density:
        Number of buildings
        Number of dwellings
    Number of residents
Diversity:
    % Exc. Res. Buildings
    Variety of POI types
    Design
    Pedestrian shed ratio
```


ACCESSIBILITY

@ HOME (4)
Distance to closest stop Has PT stop 400|800 (01) Has PT stop < 800 m (01) Number of POIs

BUILT ENVIRONMENT

@ CAMPUS (6)

Density:
Number of buildings
Number of dwellings
Diversity:
\% Exc. Res. Buildings
Variety of POI types
Design
Pedestrian shed ratio Route Lenght

ACCESSIBILITY

@ CAMPUS (4)
Distance to closest stop
Has PT stop < 800 m (01)
Type of closest PT stop Number of POIs

SOCIO-ECONOMIC (9)

Employment status
Age
Has less than 25 (dummy)
Gender
Young Children (<10) (dummy)
Number of cars
Has a car (dummy)
Drivers license (dummy)
Has PT card (dummy)

TRAVEL DISTANCE (1)
Network distance (km)

FCA 500 meters network

Logistic model (no-car commuting)

Nagelkerke $\mathbf{R}^{2}=.451$
PAC = 81.9\% (\% accuracy)

	B	S.E.	Wald	df	Sig.	Exp(B)	Lower	Upper
Socio-economic								
SE_Status (student= ref)			39.754	3	. 000			
SE_Status (researcher)	-. 148	. 308	. 231	1	. 631	. 862	. 471	1.578
SE_Status (professor)	-1.853	. 306	36.653	1	. 000	. 157	. 086	. 286
SE_Status (staff)	-. 236	. 278	. 723	1	. 395	. 789	. 458	1.361
SE_AgeLess25 (Yes=1)	1.641	. 205	63.870	1	. 000	5.159	3.450	7.715
SE_NumCars	-. 705	. 084	70.650	1	. 000	. 494	. 419	. 582
SE_Car (Has car = 1)	-2.608	. 757	11.882	1	. 001	. 074	. 017	. 325
SE_DrivLic (Yes=1)	-3.310	. 431	58.909	1	. 000	. 037	. 016	. 085
Travel Distance								
TrvDist_Class (up to $2 \mathrm{~km}=$ ref)			54.086	6	. 000			
TrvDist_Class (2 to 4 km)	-. 355	. 403	. 776	1	. 378	. 701	. 319	1.544
TrvDist_Class (4 to 7 km)	-1.325	. 359	13.616	1	. 000	. 266	. 132	. 537
TrvDist_Class (7 to 15 km)	-1.551	. 348	19.868	1	. 000	. 212	. 107	. 419
TrvDist_Class (15 to 30 km)	-1.398	. 366	14.586	1	. 000	. 247	. 121	. 506
TrvDist_Class (30 to 50 km) TrvDist Class (more than 50	-1.143	. 459	6.192	1	. 013	. 319	. 130	. 784
km)	-. 336	. 382	. 776	1	. 378	. 714	. 338	1.510
House Built Environment HBE_PT stop at less than 800 m (Yes =1)								
	. 335	. 158	4.485	1	. 034	1.399	1.025	1.908
University's Built Environment UL_Percentage Exclusively residential								
	-. 010	. 002	18.723	1	. 000	. 990	. 986	. 995
UL_Route Lenght FCA (Km)	. 012	. 003	11.866	1	. 001	1.012	1.005	1.018
Constant	8.248	. 964	73.136	1	. 000	3820.020		

Conclusions

- Major differences found between employment status BUT ALSO between campus location (and associated BE and Accessibility)
- Socio-economic very determinant
- However, BE of destination has important as BE of home
- Transport-Land Use integration must consider both origins and destinations
- Different destinations require different measures
> One size does NOT fit all!

